

Mastery for Maths at IVJS

Coffee Afternoon Friday 2nd February 2018

Mr Clifford & Miss Zughaid

Objectives

- Understand what is mastery for maths
- Understand bar modelling
- Understand STEM sentences and ping ponging
- Share good practice
- Mastery for Maths at IVJS

What does it mean to master something?

- I know how to do it
- It becomes automatic and I don't need to think about it- for example driving a car
- I'm really good at doing it painting a room, or a picture
- I can show someone else how to do it.

Mastery of Mathematics is more.....

- Achievable for all
- Deep and sustained learning
- The ability to build on something that has already been sufficiently mastered
- The ability to reason about a concept and make connections
- Conceptual and procedural fluency

Teaching for Mastery

- The belief that all pupils can achieve
- Keeping the class working together so that all can access and master mathematics
- Development of deep mathematical understanding
- Development of both factual/procedural and conceptual fluency
- Longer time on key topics, providing time to go deeper and embed learning

Teaching for Mastery

REPRESENTATION AND STRUCTURE

Mathematics is an abstract subject, representations have the potential to provide access and develop understanding.

What Are Bar Models?

A Consistent Picture

KS2 barmodelling

$$\frac{3}{5}$$
 of 20 = ?

KS2 Bar Modelling

Solve... Matthew has a 300g block of cheese. He eats $\frac{2}{5}$ of the cheese and puts the rest back in the fridge.

How much cheese did Matthew put back in the fridge?

Calculations

$$300 \div 5 = 60$$

$$3 \times 60 = 180$$

Part-Part-Whole Models

Why did we do that with concrete resources?

How many other ways could you plant your seeds?

This is a number bond.

Seeing structures in different ways Conceptual variation:

How could you describe what you see?

___is the whole ___ is a part and ____ is a part ___ and ___ makes ___

Developing depth/simplicity/clarity

7		
2	5	

Developing depth/simplicity/clarity

Ping Pong

- Provides a clear and coherent journey
- through the mathematics
- Provides detail and rigour
- Provides scaffolding for all to achieve
- Provides the small steps
- Provides the opportunity to question
- and think more deeply

Examples of STEM sentences

- Part + Part = whole
- Whole part = part

_____ is the perimeter because ____ + ____ +
 + is the distance around the shape

Variation Theory in Practice

Which set is easiest and why?

Set A	Set B
120 - 90	120 - 90
235 - 180	122 - 92
502 – 397	119 – 89
122 - 92	235 - 180
119 - 89	237 – 182
237 - 182	502 - 397

Taken (and slightly modified) from Mike Askew, Transforming Primary Mathematics, Chapter 6

Mastery for Maths at IVJS

- Provide children with visual representation in the form of a bar model/cherry tree diagram and use the language: whole and part
- Ping Pong STEM sentences include these in your success criteria
- Don't accept one word answers
- 'Design' your starters to help build concepts

"Pupil progress shouldn't be confused with curriculum pace: good progress in mathematics is not about moving on quickly"

Vanessa Pittard, May 2017